Force characteristics of in vivo tissue-engineered myocardial constructs using varying cell seeding densities.

نویسندگان

  • Ravi Birla
  • Vikas Dhawan
  • Yen-Chih Huang
  • Ian Lytle
  • Khajohn Tiranathanagul
  • David Brown
چکیده

Experiments have been successfully performed culminating in functional, vascularized, three-dimensional cardiac muscle tissue. Past experience in tissue engineering has led us to the understanding that cell seeding density plays a critical role in the formation and function of both in vitro and in vivo engineered tissues. Therefore, to improve upon the mechanics of this model and to facilitate the formation of myocardial tissue with improved functional performance, we sought to optimize the seeding density of cardiomyocytes in these constructs. Neonatal cardiac myocytes were isolated from 2-day-old Fischer 344 rat hearts. Silicone chambers containing fibrin gel were seeded with varying numbers of cardiac cells (1, 5, 10, and 20 million). Control chambers were prepared using fibrin gel alone. All of the chambers were then implanted around the femoral vessels of isogenic rats. Six constructs per cell seeding density group were implanted. Histological and immunohistochemical evaluation was performed via hematoxylin and eosin, von Gieson, and alpha-sarcomeric actin staining protocols. Linear contractile force measurements were obtained for each construct following 4 weeks of in vivo implantation. After an implantation period of 4 weeks, the newly formed cardiac constructs contained within the chambers were harvested. The femoral vessels within the constructs were found to be patent in all cases. With direct electrical stimulation, the constructs were able to generate an average active force that varied depending on their seeding density. Constructs with seeding densities of 1, 5, 10, and 20 million cells produced an average active force of 208, 241, 151, and 108 microN, respectively. The control constructs did not generate any active force on electrical stimulation. This study demonstrates the in vivo survival, vascularization, organization, and function of transplanted myocardial cells. It is also apparent that cell seeding density plays a direct role in the force generation and mechanical properties of these engineered constructs. Among different groups using varying cell seeding densities, we found that the group with 5 million cells generated maximum active force.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Combining BMP - 6 , TGF - β 3 and hydrostatic pressure stimulation enhances the functional development of cartilage tissues engineered using human infrapatellar fat pad derived stem cells †

The objective of this study was to identify a combination of growth factors that could be used with hydrostatic pressure (HP) stimulation to enhance the functional development of cartilaginous grafts engineered using human infrapatellar fat pad derived stem cells (FPSCs) isolated from osteoarthritic patients. Agarose hydrogels were first seeded with FPSCs at different seeding densities and main...

متن کامل

Effects of cell-to-collagen ratio in stem cell-seeded constructs for Achilles tendon repair.

The objective of the present study was to test the hypotheses that implantation of cell-seeded constructs in a rabbit Achilles tendon defect model would 1) improve repair biomechanics and matrix organization and 2) result in higher failure forces than measured in vivo forces in normal rabbit Achilles tendon (AT) during an inclined hopping activity. Autogenous tissue-engineered constructs were f...

متن کامل

Effects of Initial Cell Density and Hydrodynamic Culture on Osteogenic Activity of Tissue-Engineered Bone Grafts

This study aimed to study the effects of initial cell density and in vitro culture method on the construction of tissue-engineered bone grafts and osteogenic activities. Human mesenchymal stem cells (hMSCs) were seeded onto cubic scaffolds prepared from demineralized bone matrix (DBM) by three methods - static, hydrodynamic, or fibrin hydrogel-assisted seeding. The resulting cell-scaffold const...

متن کامل

Cell-induced alignment augments twitch force in fibrin gel-based engineered myocardium via gap junction modification.

A high-potential therapy for repairing the heart post-myocardial infarction is the implantation of tissue-engineered myocardium. While several groups have developed constructs that mimic the aligned structure of the native myocardium, to date no one has investigated the particular functional benefits conferred by alignment. In this study we created myocardial constructs in both aligned and isot...

متن کامل

Growth of tissue-engineered human nasoseptal cartilage in simulated microgravity.

OBJECTIVE To evaluate the feasibility of in vitro fabrication of tissue-engineered cartilage from human nasoseptal chondrocytes for autologous reconstruction. DESIGN Hyaline cartilage was reconstituted from chondrocyte-polyglycolic acid scaffolding constructs in a 3-dimensional mammalian cell culture cascade. This included monolayer cellular amplification, cell seeding in the spinner flask, a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Artificial organs

دوره 32 9  شماره 

صفحات  -

تاریخ انتشار 2008